码是什么单位| 11.19是什么星座| 全身发热是什么原因| 阴道骚痒是什么原因| 1月6号什么星座| 什么的点头| 什么东西有头无脚| 睡觉醒来口苦是什么原因| 做完胃肠镜后可以吃什么| 梦见自己拉屎是什么意思| 王为念和王芳什么关系| 身体湿气重吃什么药| 庚是什么意思| 腰间盘突出压迫神经什么症状| 提拉米苏是什么东西| 什么如生| 怀孕排卵试纸显示什么| 常喝苦荞茶有什么好处| 幽灵是什么意思| 现在最火的歌是什么| 食管裂孔疝是什么原因造成的| 小孩子睡觉磨牙是什么原因| 小麦是什么| 香波是什么| 癫是什么意思| 什么是多动症| 鞭长莫及是什么意思| 日可以加什么偏旁| pacs什么意思| ami是什么牌子| 快递客服主要做什么| 三文鱼又叫什么鱼| 蚂蚁怕什么| 翻什么覆什么| 腹股沟疝气挂什么科| 生抽是什么| 核磁共振是查什么的| 绿豆什么时候收获| 血栓的症状是什么| 毛蛋是什么| 一个王一个月念什么| 带子是什么海鲜| 女人喝甘草水有什么好处| cd20阳性什么意思| 什么是双一流大学| 男性生殖系统感染吃什么药| 风湿是什么原因造成的| 胆固醇是什么| 近视是什么原因造成的| 桃子与什么相克| 12580是什么号码| 摩托车代表什么生肖| 狗剩是什么意思| burberry是什么牌子| 咳白痰吃什么药效果好| 胃不舒服吃什么药好| 小孩口臭吃什么药| 做梦梦见捡钱是什么意思| 肾不好吃什么| 瑕疵什么意思| 冠字五行属什么| 不思量 自难忘什么意思| 例假可以吃什么水果| 令是什么生肖| 礼拜是什么意思| 吃什么孕酮值可以增高| 卖腐是什么意思| 细菌性阴道炎用什么洗液| 阴阳失调吃什么中成药| 血清胰岛素测定查什么| 孕妇尿酸高是什么原因| 市政协副主席是什么级别| 戴玉手镯有什么好处| 重日是什么意思| 佛历是什么意思| 三千大千世界什么意思| 包皮过长有什么影响| 打脸是什么意思| 舌苔厚有齿痕吃什么药| 三尖瓣轻度反流说明什么| 属猪的是什么命| 入伏吃羊肉有什么好处| 被动什么意思| 阿米巴是什么意思| 宝宝拉肚子能吃什么| 红色的对比色是什么颜色| 肺部肿瘤切除后吃什么| 乳腺点状强回声是什么意思| 麻醉评估是什么意思| 麻腮风是什么| 老年人脚浮肿是什么原因| 38是什么生肖| 前列腺特异性抗原高是什么原因| 男龙和什么生肖最配| 喜欢吃冰的是什么原因| 甲醇是什么东西| 梦到两条蛇预示着什么| 专案组是什么意思| 亲吻是什么感觉| 火龙果什么季节成熟| 探望病人买什么水果| 谢娜人气为什么那么高| 结节3类是什么意思| 什么是小针刀治疗| 阴唇为什么会变黑| 为什么会失眠| 加油站为什么不能打电话| 漫游什么意思| 吃瓜群众是什么意思| 一什么人家| 经常拉肚子什么原因| 李什么名字好听| 屎壳郎为什么要推粪球| 和平是什么意思| 棕色用什么颜色调出来| snp是什么意思| 看脑袋挂什么科| 手足口是什么| 脸肿是什么原因| 后背疼去医院挂什么科| 孕早期有什么症状| 血糖偏高能吃什么水果和食物最好| 宝姿是什么档次的牌子| 1990年什么命| 鸩杀是什么意思| 丝瓜不能和什么一起吃| 益生菌什么时间吃最好| 鱼子酱是什么鱼| 植脂末是什么| 虫加合念什么| 血糖高是什么原因引起| 1978年属什么的| 吃力不讨好是什么意思| 一直打喷嚏是什么原因| 慧命是什么意思| 嘴角长痘痘是什么原因| 巧囊是什么原因形成的| 猪咳嗽用什么药效果好| 假释是什么意思| 蓁是什么意思| 刺猬是什么动物| 桃胶有什么功效与作用| 收阴是什么意思| 青榄配什么煲汤止咳做法| 忽然流鼻血是什么原因引起的| 大三阳是什么意思| 宇字属于五行属什么| 荠菜什么时候播种最好| 孕妇羊水少吃什么补的快| 心脏造影是什么意思| 姜黄粉是什么| 武则天什么朝代| 津液是什么意思| 观音菩萨的坐骑是什么| 小孩睡觉张开嘴巴是什么原因| 肺结节手术后吃什么好| 58年属什么| 头上出汗是什么原因| 熊喜欢吃什么食物| 秋葵不适宜什么人吃| kappa属于什么档次| 8月初是什么星座| 什么是莱赛尔纤维| 山宗读什么| 次月什么意思| 江苏有什么山| 1977年属蛇是什么命| 风水是什么意思| 心口疼挂什么科| 人心不足蛇吞象是什么意思| 过敏有什么症状表现| 软组织感染是什么意思| 你太low了是什么意思| 心口疼是什么原因女性| 世界7大奇迹是什么| 什么是太监| 左肋骨下方隐隐疼痛是什么原因| 俄罗斯是什么人种| 鬼针草能治什么病| 一六年属什么生肖| biu是什么意思| peep是什么意思| 女人喝红酒有什么好处| 打狗是什么意思| 什么时候开始数伏| 阿莫西林什么时候吃| 贝壳吃什么食物| 什么是尘肺病| 会阴是什么| 翻来覆去的覆什么意思| 经常手淫会导致什么| 4月什么星座| 左心室舒张功能减退是什么意思| 42天产后检查都检查什么项目| 喝什么补肾| 圆周率是什么| 什么牌子的氨糖最好| 生源是什么意思| 鱼上浮的原因是什么| 得过且过什么意思| 勃起不坚硬吃什么药| 什么是abs| 梦见好多葡萄是什么意思| 激素6项检查是些什么| 孕妇吸二手烟对胎儿有什么影响| 乙肝抗体1000代表什么| 缘木求鱼是什么意思| 孙权孙策什么关系| 小腿外侧是什么经络| 生命的真谛是什么| 手心出汗是什么原因| 按摩spa是什么意思| aba是什么意思| 食物发霉是什么菌| 糖尿病患者适合吃什么水果| 汗毛旺盛是什么原因| 乳酸脱氢酶高是什么原因| 五指毛桃什么人不能吃| 74年属虎是什么命| 下嘴唇溃疡是什么原因| 荆条是什么意思| 草字头下面一个高字读什么| 散光和近视有什么区别| 殿试是什么意思| 减肥期间可以吃什么零食| 遗言是什么意思| po是什么| 怀孕了吃什么药可以打掉| 双什么意思| 什么米最贵| 疱疹是什么原因引起| 血气是什么意思| 紫花地丁有什么功效| 2019年属什么生肖| 脚侧面骨头突出叫什么| 什么植物| 最近有什么病毒感染| 冲菜是什么菜| 胆碱酯酶高是什么意思| 下巴痘痘反复长是什么原因| 功能性消化不良是什么意思| 莫逆之交是什么意思| 经常说梦话是什么原因| 致意是什么意思| 榴莲为什么苦| 胃酸吃什么能马上缓解| 客串是什么意思| 什么是穿刺| 途字五行属什么| 适合什么发型| 八点是什么时辰| 为什么种牙那么贵| 湿气重去医院挂什么科| 什么效应| 莓茶什么人不适合喝| 大豆是什么豆| 肾功能挂什么科| 吃什么油对心脑血管好| 频发房性早搏是什么意思| 白条是什么鱼| 弹性工作制是什么意思| 知了猴有什么营养| 建军节是什么时候| 早上空腹喝淡盐水有什么好处| 百度Jump to content

新时代 新征程安徽省第二届公路摄影大赛——新华网安徽频道

From Wikipedia, the free encyclopedia
百度 在活动开展过程中,得到了勐来乡人大赵开明主席、班列村田支书、茶厂主任的大力支持。

In theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".[1]

In order to perform a rigorous study of computation, computer scientists work with a mathematical abstraction of computers called a model of computation. There are several models in use, but the most commonly examined is the Turing machine.[2] Computer scientists study the Turing machine because it is simple to formulate, can be analyzed and used to prove results, and because it represents what many consider the most powerful possible "reasonable" model of computation (see Church–Turing thesis).[3] It might seem that the potentially infinite memory capacity is an unrealizable attribute, but any decidable problem[4] solved by a Turing machine will always require only a finite amount of memory. So in principle, any problem that can be solved (decided) by a Turing machine can be solved by a computer that has a finite amount of memory.

History

[edit]

The theory of computation can be considered the creation of models of all kinds in the field of computer science. Therefore, mathematics and logic are used. In the last century, it separated from mathematics and became an independent academic discipline with its own conferences such as FOCS in 1960 and STOC in 1969, and its own awards such as the IMU Abacus Medal (established in 1981 as the Rolf Nevanlinna Prize), the G?del Prize, established in 1993, and the Knuth Prize, established in 1996.

Some pioneers of the theory of computation were Ramon Llull, Alonzo Church, Kurt G?del, Alan Turing, Stephen Kleene, Rózsa Péter, John von Neumann and Claude Shannon.

Branches

[edit]

Automata theory

[edit]
Grammar Languages Automaton Production rules (constraints)
Type-0 Recursively enumerable Turing machine (no restrictions)
Type-1 Context-sensitive Linear-bounded non-deterministic Turing machine
Type-2 Context-free Non-deterministic pushdown automaton
Type-3 Regular Finite-state automaton
and

Automata theory is the study of abstract machines (or more appropriately, abstract 'mathematical' machines or systems) and the computational problems that can be solved using these machines. These abstract machines are called automata. Automata comes from the Greek word (Αυτ?ματα) which means that something is doing something by itself. Automata theory is also closely related to formal language theory,[5] as the automata are often classified by the class of formal languages they are able to recognize. An automaton can be a finite representation of a formal language that may be an infinite set. Automata are used as theoretical models for computing machines, and are used for proofs about computability.

Formal language theory

[edit]
The Chomsky hierarchy
Set inclusions described by the Chomsky hierarchy

Formal language theory is a branch of mathematics concerned with describing languages as a set of operations over an alphabet. It is closely linked with automata theory, as automata are used to generate and recognize formal languages. There are several classes of formal languages, each allowing more complex language specification than the one before it, i.e. Chomsky hierarchy,[6] and each corresponding to a class of automata which recognizes it. Because automata are used as models for computation, formal languages are the preferred mode of specification for any problem that must be computed.

Computability theory

[edit]

Computability theory deals primarily with the question of the extent to which a problem is solvable on a computer. The statement that the halting problem cannot be solved by a Turing machine[7] is one of the most important results in computability theory, as it is an example of a concrete problem that is both easy to formulate and impossible to solve using a Turing machine. Much of computability theory builds on the halting problem result.

Another important step in computability theory was Rice's theorem, which states that for all non-trivial properties of partial functions, it is undecidable whether a Turing machine computes a partial function with that property.[8]

Computability theory is closely related to the branch of mathematical logic called recursion theory, which removes the restriction of studying only models of computation which are reducible to the Turing model.[9] Many mathematicians and computational theorists who study recursion theory will refer to it as computability theory.

Computational complexity theory

[edit]
A representation of the relation among complexity classes

Computational complexity theory considers not only whether a problem can be solved at all on a computer, but also how efficiently the problem can be solved. Two major aspects are considered: time complexity and space complexity, which are respectively how many steps it takes to perform a computation, and how much memory is required to perform that computation.

In order to analyze how much time and space a given algorithm requires, computer scientists express the time or space required to solve the problem as a function of the size of the input problem. For example, finding a particular number in a long list of numbers becomes harder as the list of numbers grows larger. If we say there are n numbers in the list, then if the list is not sorted or indexed in any way we may have to look at every number in order to find the number we're seeking. We thus say that in order to solve this problem, the computer needs to perform a number of steps that grow linearly in the size of the problem.

To simplify this problem, computer scientists have adopted big O notation, which allows functions to be compared in a way that ensures that particular aspects of a machine's construction do not need to be considered, but rather only the asymptotic behavior as problems become large. So in our previous example, we might say that the problem requires steps to solve.

Perhaps the most important open problem in all of computer science is the question of whether a certain broad class of problems denoted NP can be solved efficiently. This is discussed further at Complexity classes P and NP, and P versus NP problem is one of the seven Millennium Prize Problems stated by the Clay Mathematics Institute in 2000. The Official Problem Description was given by Turing Award winner Stephen Cook.

Models of computation

[edit]

Aside from a Turing machine, other equivalent (see Church–Turing thesis) models of computation are in use.

Lambda calculus
A computation consists of an initial lambda expression (or two if you want to separate the function and its input) plus a finite sequence of lambda terms, each deduced from the preceding term by one application of Beta reduction.
Combinatory logic
is a concept which has many similarities to -calculus, but also important differences exist (e.g. fixed point combinator Y has normal form in combinatory logic but not in -calculus). Combinatory logic was developed with great ambitions: understanding the nature of paradoxes, making foundations of mathematics more economic (conceptually), eliminating the notion of variables (thus clarifying their role in mathematics).
μ-recursive functions
a computation consists of a mu-recursive function, i.e. its defining sequence, any input value(s) and a sequence of recursive functions appearing in the defining sequence with inputs and outputs. Thus, if in the defining sequence of a recursive function the functions and appear, then terms of the form 'g(5)=7' or 'h(3,2)=10' might appear. Each entry in this sequence needs to be an application of a basic function or follow from the entries above by using composition, primitive recursion or μ recursion. For instance if , then for 'f(5)=3' to appear, terms like 'g(5)=6' and 'h(5,6)=3' must occur above. The computation terminates only if the final term gives the value of the recursive function applied to the inputs.
Markov algorithm
a string rewriting system that uses grammar-like rules to operate on strings of symbols.
Register machine
is a theoretically interesting idealization of a computer. There are several variants. In most of them, each register can hold a natural number (of unlimited size), and the instructions are simple (and few in number), e.g. only decrementation (combined with conditional jump) and incrementation exist (and halting). The lack of the infinite (or dynamically growing) external store (seen at Turing machines) can be understood by replacing its role with G?del numbering techniques: the fact that each register holds a natural number allows the possibility of representing a complicated thing (e.g. a sequence, or a matrix etc.) by an appropriately huge natural number — unambiguity of both representation and interpretation can be established by number theoretical foundations of these techniques.

In addition to the general computational models, some simpler computational models are useful for special, restricted applications. Regular expressions, for example, specify string patterns in many contexts, from office productivity software to programming languages. Another formalism mathematically equivalent to regular expressions, finite automata are used in circuit design and in some kinds of problem-solving. Context-free grammars specify programming language syntax. Non-deterministic pushdown automata are another formalism equivalent to context-free grammars. Primitive recursive functions are a defined subclass of the recursive functions.

Different models of computation have the ability to do different tasks. One way to measure the power of a computational model is to study the class of formal languages that the model can generate; in such a way to the Chomsky hierarchy of languages is obtained.

References

[edit]
  1. ^ Sipser (2013, p. 1):

    "central areas of the theory of computation: automata, computability, and complexity."

  2. ^ Hodges, Andrew (2012). Alan Turing: The Enigma (The Centenary ed.). Princeton University Press. ISBN 978-0-691-15564-7.
  3. ^ Rabin, Michael O. (June 2012). Turing, Church, G?del, Computability, Complexity and Randomization: A Personal View.
  4. ^ Donald Monk (1976). Mathematical Logic. Springer-Verlag. ISBN 9780387901701.
  5. ^ Hopcroft, John E. and Jeffrey D. Ullman (2006). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Reading, MA: Addison-Wesley. ISBN 978-0-321-45536-9.
  6. ^ Chomsky, N. (1956). "Three models for the description of language". IEEE Transactions on Information Theory. 2 (3): 113–124. doi:10.1109/TIT.1956.1056813. S2CID 19519474.
  7. ^ Alan Turing (1937). "On computable numbers, with an application to the Entscheidungsproblem". Proceedings of the London Mathematical Society. 2 (42). IEEE: 230–265. doi:10.1112/plms/s2-42.1.230. S2CID 73712. Retrieved 6 January 2015.
  8. ^ Henry Gordon Rice (1953). "Classes of Recursively Enumerable Sets and Their Decision Problems". Transactions of the American Mathematical Society. 74 (2). American Mathematical Society: 358–366. doi:10.2307/1990888. JSTOR 1990888.
  9. ^ Martin Davis (2004). The undecidable: Basic papers on undecidable propositions, unsolvable problems and computable functions (Dover Ed). Dover Publications. ISBN 978-0486432281.

Further reading

[edit]
Textbooks aimed at computer scientists

(There are many textbooks in this area; this list is by necessity incomplete.)

Books on computability theory from the (wider) mathematical perspective
Historical perspective
[edit]
阴囊潮湿吃什么中成药 心什么肉什么 融合是什么意思 艾灸肚脐眼有什么好处 线上考试是什么意思
女人最想要什么 小孩子腿疼是什么原因 手脚爱出汗是什么原因 驿是什么意思 蹦蹦跳跳是什么生肖
心率低吃什么药好 流年花开讲的什么 梦见自己手机丢了是什么意思 大象是什么颜色 美人尖是什么意思
美人鱼是什么动物 clinique是什么牌子的化妆品 衍生物是什么意思 学信网上的报告编号是什么 一级护理是什么意思
什么什么团结hcv9jop6ns8r.cn 什么牌子的蜂胶最好hcv9jop2ns9r.cn 乙肝五项第二项阳性是什么意思hcv8jop3ns9r.cn 肺不好吃什么hcv9jop0ns6r.cn 为什么会突然不爱了hcv9jop3ns2r.cn
成人发烧吃什么退烧药hcv7jop7ns1r.cn 眼睛流泪是什么原因hcv7jop6ns3r.cn 荷叶泡水喝有什么功效hcv8jop0ns3r.cn 鸟屎掉头上有什么预兆hcv7jop7ns3r.cn 过期的啤酒能干什么hcv9jop2ns1r.cn
高同型半胱氨酸血症吃什么药hcv9jop6ns2r.cn 顶天立地什么意思hcv9jop4ns6r.cn 梦到抓鱼是什么意思hcv9jop1ns4r.cn 搀扶什么意思beikeqingting.com 唐僧叫什么hcv8jop9ns0r.cn
3月6日是什么星座hcv9jop0ns6r.cn 痰湿吃什么药hcv8jop2ns8r.cn 额头高代表什么zhongyiyatai.com 过敏性皮炎吃什么药hcv9jop1ns4r.cn 解压密码是什么hcv9jop3ns4r.cn
百度